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Materials and Methods 

Behavioral procedures 
All experimental protocols were approved by the Institutional Animal Care and Use 

Committee of RIKEN. Six-week-old male Long-Evans rats were purchased from Japan SLC, 
Inc. (Shizuoka, Japan). The rats were housed in a temperature-controlled room (20-22℃) under a 
light-dark cycle (lights on from 8:00 to 20:00). After 5-7 days of environmental habituation, the 
rats were subjected to a water deprivation schedule and started training on the behavioral task (7-
8 weeks old at the start of training).  

Goal-directed behavioral task 
Six rats were trained in a goal-directed behavioral task (Fig. 1A; Fig. S1) for 

electrophysiological recording (rat IDs: o28, o30, o31, o32, o34, and o36). The behavioral 
experiments were conducted in an open field of 210×210 cm that was surrounded by 40cm 
height fences. Visual cues were placed in the center of each fence in each direction. Two 
movable water ports (D2 × H1.5 cm) were set in the open field, which was connected to 
micropumps (Type 7615; Christian Bürkert GmbH & Co. KG, Ingelfingen, Germany) that 
delivered 0.2% saccharin water (M5N1991; Nacalai Tesque, Kyoto, Japan) as a reward. The rats 
were rewarded with water drops (25 μl) for alternating visits to the two ports. The infrared 
sensors (LR-TB5000CL; Keyence, Osaka, Japan) were placed above the water ports to detect the 
time of arrival and departure of the rats. Each block consisted of 20-30 trials of round trips 
between two ports. The locations of the water ports varied for each block, as indicated in Fig. 
1A. The possible locations of the pairs of the water ports were shown in Fig. S1C. There were 
also additional blocks in which the two ports were placed diagonally. A single session of this 
task lasted approximately 1 hour. The behavioral experiments were automatically controlled by 
the custom-written LabVIEW (National Instruments, Austin, TX) programs running on a 
Windows personal computer located outside of the field. The rats were trained on this task for 2-
3 weeks before surgery. 

A series of goal-directed and random foraging tasks 
Three rats were trained in a series of goal-directed (short version) and random foraging 

tasks for electrophysiological recording (Fig. 4) (rat IDs: o44, o45, and o46). In each session, the 
rats performed the goal-directed task (short version) and then sequentially performed a random 
foraging task in the same open field environment. The apparatus and procedure for the goal-
directed task (short version) were the same as described above, but each block consisted of 10-15 
trials, which was approximately half of the full-length goal-directed behavioral task. In the 
random foraging task, the water ports used in the goal-directed task were removed from the open 
field. The rats freely explored randomly placed chocolate cereals that were moistened with water 
in the open field for approximately 40 min. The maximum capacity of the chocolate cereal was 
roughly 2 g per session. Because of the different task configurations, we analyzed separately the 
data from the six rats that performed the full-length goal-directed behavior and the data from the 
three rats that performed a series of goal-directed (short version) and random foraging tasks 
(Table S1). The data from the three rats were used in Fig. 4 and Fig. S6. 
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Surgery and recording 
Nine rats were surgically implanted with silicon probes (rat-IDs: o28, o30, o31, o32, o34, 

o36, o44, o45, and o46) for the chronic recording of neuronal activity during the tasks. General 
surgical procedures for chronic recordings have been described previously (19, 20). In this study, 
we used P128-8 silicon probes (Diagnostic Biochips Inc., Glen Burnie, MD) consisting of 8 
shanks (150-µm shank spacing). Each shank had 16 recording sites (~1 MΩ impedance), 
staggered to provide a two-dimensional arrangement (30 µm vertical separation; Fig. S6B). The 
rats were implanted with two silicon probes in the entorhinal cortex (the target coordinate was 
anterior-posterior (AP) = -8.67 mm, medial-lateral (ML) = 4.3 mm, and dorsal-ventral (DV) = 
2.65 mm), and the CA1 region of the hippocampus (AP = -3.6 mm, ML = 2.8 mm, and DV =1.4 
mm) in the same hemisphere. The shanks were oriented parallel to the anterior-posterior axis for 
the entorhinal cortex and were aligned parallel to the septotemporal axis for the hippocampus 
(i.e., 45 degrees parasagittal), respectively. The silicon probes were placed approximately 0.5 
mm above the target coordinates at the time of surgery and gradually inserted daily to the desired 
depth positions using the attached micromanipulator.  

During the recording sessions, the wide-band neurophysiological signals were recorded 
continuously at 20 kHz on the Intan RHD 1024-channel recording controller (Intan 
Technologies, Los Angeles, CA). For LFP analysis, signals downsampled to 1.25 kHz were 
used. Spike sorting was performed semi-automatically with Kilosort2, followed by manually 
adjusting the clusters with Phy2 (56). The tips of the probes were moved spontaneously or 
manually by the experimenter between sessions. However, we could not exclude the possibility 
that some neurons that were recorded in different sessions were identical because spikes from 
sessions recorded on different days were clustered separately. Thus, the total number of 
independent neurons may have been overestimated. 

Rat behavior was monitored using a USB camera with a CMOS sensor (acA720-520; 
Basler AG, Ahrensburg, Germany) set on the ceiling. The capturing times of video frames were 
simultaneously recorded with electrophysiological data to synchronize the physiological and 
behavioral data in the post hoc analyses. The positional information of the rat’s head was 
subtracted from the video frames using the DeepLabCut software (57). 

After all the recording sessions were completed, a small current (5-7.5 µA for 10 to 12 
s) was passed through the recording electrodes of the probe two days prior to sacrificing the 
animals to identify the recording sites. The rats were deeply anesthetized and perfused through 
the heart with PBS, followed by a 4% paraformaldehyde solution. The brains were sectioned by 
a slicer (PRO10; Dosaka EM, Kyoto, Japan) at 100 µm in the sagittal plane. Sections were 
stained with fluorescent Nissl, mounted on slides, and cover-slipped. The images were captured 
with a research slide scanner (Slideview VS200; Evident, Tokyo, Japan) with ×10 resolution. 
The traces of the silicon probe shanks were reconstructed from multiple sections (Fig. 1C, Fig. 
S6F). 
 
Data analysis 

All analyses after spike sorting were performed with custom-written programs in 
MATLAB (MathWorks, Natick, MA). We used the Circular Statistics Toolbox (58) for circular 
analyses and statistics. 
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Firing rate maps and spatial autocorrelation  
A two-dimensional firing rate map of each unit was constructed by calculating the spikes 

divided by occupancy time for each 3cm x 3cm bin of position data, followed by applying 
smoothing with a two-dimensional convolution with a Gaussian kernel. The spatial 
autocorrelation of a rate map was calculated using Pearson’s product moment correlation 
coefficient with correction for edge effect and unvisited positions based on the previous studies 
(5, 6). A trial period was defined as the time from departure to arrival detected by the infrared 
sensors located above the reward ports.  

We also constructed rate maps using the position data that were projected to future or 
past positions (Fig. 1E). To obtain the future or past positions, each position point was projected 
onto the actual rat trajectory to shift the distance d (Fig. 1D). If projection on the trajectory was 
not possible (e.g., around the goal position of trials), these position points were omitted.  

We also constructed rate maps using only selected directions of travel (Fig. 2B). In this 
analysis, task trials were grouped by direction of travel (i.e., north to south, south to north, east to 
west, and west to east), and the firing rate map was computed using only the position data for 
each group of trials.  
 
Analysis of firing rate in linearized positions 

A plot of firing rate in the linearized positions was also constructed by direction for each 
block (Fig. 2B, second right; Fig. S3A). The two-dimensional position data were linearized by 
projecting a straight line between the start and goal positions. Similar to a two-dimensional firing 
rate map, a one-dimensional firing rate plot was made by calculating the spikes divided by the 
occupancy time for each 0.01 bin of normalized position, followed by applying smoothing with a 
convolution with a Gaussian kernel. Here, normalized position 1 corresponds to the length of one 
side of the open field (i.e., 210 cm).  

We also made a one-dimensional rate plot aligned by the peaks of the grid fields (Fig. 
2B, right; Fig. S3A). First, we detected local peaks in the rate plot of each block and in each 
direction. Then, we aligned each peak so that its position became the zero point and averaged the 
total detected peaks. 
 
Gridness score 

To assess the grid structure of the firing rate maps, we calculated gridness scores. First, 
we calculated the spatial autocorrelation for the smoothed two-dimensional rate map (5, 6). 
Then, we detected the six peaks closest to the center, within 1.5 times the distance to the closest 
peak in the autocorrelation map. If there were fewer than six peaks, only the detected peaks were 
used. To modify the elliptical distortion of these six peaks, we applied the algorithms developed 
by Brandon et al. 2011 (59) (referred to as ‘gridness measure 3’ in their paper). We then 
extracted ring parts surrounded by two circles; the inner radius was defined as 30 cm from the 
center of the map, and the outer radius was varied from 33 cm to 120 cm in steps of 1 bin (3 cm). 
We calculated the Pearson’s correlation of each ring part with its rotation in degrees obtained for 
angles of 60° and 120° on one side and 30°, 90°, and 150° on the other. For each sample, the 
score was calculated as the minimum difference between any of the elements in the first group 
and any of the elements in the second group. The gridness score was defined as the best score 
from these consecutive samples of ring parts (59, 60). 

To compute the plot of the gridness score as a function of position shift, we calculated the 
position of the projected location at shift distance d (-55< d < 55 cm, step is 0.55 cm) using the 
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method described above, and the gridness score was calculated at each d. The optimal position 
shift was defined as the location of the peak sought within half the grid spacing in the plus and 
minus directions, respectively, for each cell. 

To estimate the statistical significance of the gridness score, we used the shuffling 
method. To obtain the surrogate dataset, the position data of the trials were shuffled to the data of 
other trials, and a surrogate gridness score was computed using the trial-shuffled position data. 
We repeated this 100 times. If the original gridness score was above 95% of the surrogate 
dataset, we considered the gridness score to be significant (P<0.05). 
 
Analysis of grid spacing and grid orientation 
 To quantify the grid spacing, we calculated the mean of the distances from the center to 
the six peaks in the autocorrelation of the firing rate map (Fig. 3E). To estimate the orientation 
with respect to the arena boundaries for grid cells (14), we calculated the direction of the six 
peaks closest to the center in the autocorrelation of the firing rate map (Fig. 3L). For predictive 
grid cells, we used the autocorrelation map of the firing rate map at the optimally shifted position 
for these analyses. 
 
Analysis of LFP 

To extract theta phase, LFPs in the CA1 pyramidal cell layers, which were identified by 
the amplitudes and the polarities of sharp wave ripples (61), were filtered with a Butterworth 
filter with a pass-band range of 4-10 Hz. Instantaneous theta phases were estimated by Hilbert 
transform of the filtered signals. 

The presence of theta phase precession in each neuron was assessed as follows (Fig. 
S3B): First, we made a rate plot and theta phase plot aligned by the peaks of the grid fields, as 
described above. The standard deviation σ was calculated over the distribution centered on the 
peak of the rate plot. The positions were divided into bins from -σ to +σ with a step of σ/5, and 
the spiking theta phases in each bin were averaged. If the average phase was shifted more than 
60 degrees from -σ to +σ, we considered the presence of phase precession. 
 
Criteria for predictive, phase-precessions, and phase-locked grid cells 

In this study, we considered regular spiking neurons as those with an average firing rate 
between 0.8 Hz and 7 Hz during the session and with spatial information (62) higher than 0.8 
bit/spike (n=3843 units from 6 rats). Spatial information was calculated from a firing rate map 
for each direction and averaged. We used them in the subsequent analysis 
(A) Predictive grid cell criteria were defined as meeting the following conditions: (i) The gridness 

score at the original location is not significant (P ≥ 0.05) compared to the shuffled data. (ii) 
When the gridness score is plotted as a function of location shift, there is a peak location at a 
future location, and the gridness score at the peak location is significant (P < 0.05). (iii) There 
is no phase precession, and theta phase preference is 180° ± 60° with a peak-to-baseline ratio 
greater than 20. 

(B) Phase-precession grid cell criteria were defined as (i) the gridness score at the original location 
is significant (P < 0.05) compared to the shuffled data, and (ii) phase precession is present (Fig 
S3B). 

(C) Phase-locked grid cell criteria were defined as (i) the gridness score at the original location is 
significant (P < 0.05) compared to the shuffled data, and (ii) there is no phase precession, and 
theta phase preference is 300° ± 60°. 
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Analysis of speed tuning 
 To assess the speed tuning of each cell, we calculated speed scores defined as the Pearson 
product-moment correlation between the instantaneous firing rate and running speed in 25.6ms 
time bins, as proposed in the previous report (8). For the statistical evaluation of the speed 
tuning, we used the shuffling procedure while preserving the positional information. As shown in 
Fig. 3I, there was the relationship between speed and rat position. To rule out the effect of 
position, we segmented the location into 6cm × 6cm meshes (Fig. 3I) and shuffled the 
relationship between speed and time labels within each mesh in each block. We repeated this 100 
times for each cell. If a neuron’s speed correlation from the original data was greater than the 
99th percentile of the distribution of all shuffled data, we considered the firing rate of the neuron 
to be significantly correlated with speed (Fig. 3J). 
 
Analysis of optimal grid shift in each direction 
 To estimate the optimal grid shift in each direction, we calculated the cross-correlation of 
the unidirectional map and optimally shifted map including all directions, and then quantified the 
offset of the cross-correlation peak from the center point (Fig. S5). The search for the peak 
position in the cross-correlation map was searched within half the grid spacing to the 
approaching direction of travel. The predictive grid cells that had the peaks in the cross-
correlation maps from all four unidirectional maps were used in the analysis (n = 184 cells). 

 
Comparison of position projection methods 

We tested the methods of spatial shift for estimating the gridness for the future position. 
(i) Projection on the rat trajectory with distance d, the method we mainly used in this study (Fig 
1D). (ii) Accumulation along the trajectory. (iii) Projection on the tangential line of the rat 
trajectory. (iv) Projection on the line extended in the head direction (Fig. S7). To describe this in 
more detail, method (i) projected to a point on the trajectory at a linear distance of d from the 
rat's current position; method (ii) projected to a point on the trajectory at a cumulative distance of 
d on the trajectory; in method (iii), the tangent to the trajectory at the rat's current position was 
calculated and projected to a position point d away tangentially away from the current position; 
in method (iv), the head direction vector at the rat's current position was calculated and projected 
to a point d away from the current position in the head direction. Note that methods (i) and (ii) 
projected positions on the rat's actual trajectory, but the projected points in methods (iii) and (iv) 
are not necessarily on the actual trajectory. 
 
Comparison of time and position shift for future projection 

We examined which of the positional or temporal shift was optimal for predicting future 
spatial information in the predictive grid cells (Fig. S8). To compute the plot of the gridness 
score as a function of temporal shift, we calculated the position of the projected location at shift 
time t with a step of 25.6 ms, and the gridness score was calculated at each t. We computed the 
gridness score as a function of both positional and temporal shift and compared the maximum 
gridness scores between them (Fig. S8C). In this analysis, we included the predictive grid cells 
that had a significant gridness score at the peak of both positional and temporal shifts (n = 168 
cells).  
 In addition, we investigated the effect of grid spacing on the relationship between spatial 
and temporal shifts in the predictive grid cell. To examine the effect of the size of the grid 
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spacing on the spatial and temporal shift, we sorted the predictive grid cells by their grid spacing 
and divided them into two groups with large and small grid spacing. The optimal positional and 
temporal shifts were then compared between the two groups (Fig. S8D-E). 

We also examined the effect of speed on the relationship between spatial and temporal 
shifts in the predictive grid cell. To examine the effect of running speed on spatial and temporal 
shift, firing spikes were sorted by the speed in each predictive grid cell while preserving the 
positional information. As shown in Fig. S8F, there was a relationship between speed and rat 
position. To rule out the influence of the correlation between position and speed, we segmented 
the location into 6cm × 6cm meshes (Fig. S8F). We sorted the spikes by the speed at which the 
spike occurred within each mesh in each block and divided them into two groups with high and 
low speeds. The optimal positional and temporal shifts were then compared between the two 
groups (Fig. S8F-G). 
 
 
Layer identification of the MEC neurons 

We performed analyses to determine in which layers of the MEC the recorded units were 
located (Fig. S6). First, to anatomically identify where the shanks were placed in the MEC, a 
current lesion was made on the last day of recording in each animal, followed by Nissl staining 
of the brain sections (Fig. S6A), as described above. In addition, electrophysiological analysis 
was also performed in each session for the purpose of more precise location determination. 
Figure S6C shows the CSD of the averaged theta oscillation calculated in the direction 
orthogonal to the layer. As reported in the previous studies, phase reversal was observed between 
layer 1 and layer 2 (63, 64). Figure S6D shows a two-dimensional CSD based on all channels of 
all shanks in the MEC, which shows that both anatomical and electrophysiological features are 
well matched. Using the anatomical and electrophysiological analysis, we identified the location 
of each cell in the layer of the MEC based on the electrode position where the maximum 
potential of the cell was obtained (Fig. S6E). 
 
Overall firing rate distribution 

To calculate the overall firing rate distribution (Fig. 3N), the rate plot in the linearized 
positions was first calculated in each direction of each block and then averaged and normalized 
for each neuron. Overall averages were then calculated for all predictive, phase-precession, and 
phase-locked grid cells, respectively. 
 
Permutation tests  

Permutation tests were used to identify conditional differences in firing rates or decoded 
positions (Figs. 3N & 5F). Detailed information on this method is provided in the previous 
publications (58). Briefly, the mean rate plot from the start to goal positions in the normalized 
position was estimated in each neuron in each type of grid cell (Fig 3J; e.g., the mean firing rates 
of predictive and phase-precession grid cells; 𝜆𝜆pred(𝑡𝑡) and 𝜆𝜆phaseprec(𝑡𝑡)). Then, the difference 
of the rates, 𝐷𝐷0(𝑡𝑡) = 𝜆𝜆pred(𝑡𝑡) − 𝜆𝜆phaseprec(𝑡𝑡), was computed. The labels of the neuron types 
were randomly permuted, and the mean rate plots and the statistic D1(t) under the permuted 
labels were re-estimated. This process was repeated R times to obtain the statistic from the 
original data, D0(x), along with the statistic from the resampled data, D1(t), …, DR(t). Using this 
resampled (shuffled) data set, a pointwise p-value (5% for both sides, i.e., 2.5% for upper and 
lower) was computed at each point. To avoid multiple comparison issues, we also computed the 
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global 5% bands (58). The permutation tests were also used to assess the significance of the 
differences in decoded position between the data including and excluding the predictive grid 
cells (Fig. 5F). 
 
Data analysis for a series of goal-directed and random foraging tasks 

Three rats performed a series of goal-directed (short version) and random foraging tasks 
in the same environment on the same days, as described above. We applied spike sorting to the 
data containing both tasks on each day, allowing us to observe the activity of the same units in 
the both tasks. The procedure of the analysis was the same as the analysis of the data obtained in 
the full-length goad-directed behavior task. For the group analysis in Fig. 4D-F, we used the 
neurons that met the criteria of predictive, phase-precession, and phase-locked grid cells in the 
goal-directed task (short version) (n = 143, 44, and 48 cells from 3 rats, respectively). For the 
group analysis in Fig. 4G-I, in addition to the above criteria for Fig. 4D-F, we used the neurons 
that had a significant grid score at the peak of the optimal shift in the random foraging task data 
to compare the grid properties between the goal-directed and random foraging tasks (n = 53, 42, 
and 48 cells, respectively). 
 
Reconstruction of rat’s position from neuronal activities 

A memoryless Bayesian decoding algorithm was used to estimate the rat’s positions in 
the task trials (Fig. 5; 17-20, 65). In this analysis, we used firing rate maps of neurons as a prior 
template and spiking activity of neurons in 10 ms bins as to compute a posterior. Here, neuronal 
activity of predictive, phase-precession, and phase-locked grid cells was used. The firing rate 
maps at the optimally shifted position with were used as prior templates for predictive, phase-
precession, and phase-locked grid cells. Based on Bayes’ theory, the posterior probability of the 
two-dimensional position (𝒙𝒙) given spike trains from single neurons (spikes) was estimated as: 
 

𝑃𝑃(𝒙𝒙|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) =
𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝒙𝒙) ∙ 𝑃𝑃(𝒙𝒙)

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  

 
The likelihood was estimated under the assumption of Poisson firing statistics and 

independent rates, as: 
 

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝒙𝒙) = �𝑃𝑃(𝑛𝑛𝑖𝑖|𝒙𝒙) 
𝑁𝑁

𝑖𝑖=1

 

                        = �
(𝜏𝜏𝑓𝑓𝑖𝑖(𝒙𝒙))𝑛𝑛𝑖𝑖

𝑛𝑛𝑖𝑖!
𝑠𝑠𝑒𝑒𝑠𝑠(−𝜏𝜏𝑓𝑓𝑖𝑖(𝒙𝒙)) 

𝑁𝑁

𝑖𝑖=1

 

 
where τ is the time window of sampling spike trains (10ms was used in this study), 𝑓𝑓𝑖𝑖(𝒙𝒙) 

is the firing rate maps at the highest gridness scores of the i-th unit, ni is the number of spikes of 
the i-th unit in the time window, and N is the total number of units. Combining these equations, 
the posterior probability of the position was computed as: 
 

𝑃𝑃(𝒙𝒙|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝐶𝐶 · 𝑃𝑃(𝒙𝒙)��
(𝜏𝜏𝑓𝑓𝑖𝑖(𝒙𝒙))𝑛𝑛𝑖𝑖

𝑛𝑛𝑖𝑖!
 

𝑁𝑁

𝑖𝑖=1

� 𝑠𝑠𝑒𝑒𝑠𝑠 �−𝜏𝜏�𝑓𝑓𝑖𝑖(𝒙𝒙)
𝑁𝑁

𝑖𝑖=1

� 
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where C is a normalization factor that depends on τ and the number of spikes of each 
neuron (65). To construct theta sequences, the decoded probabilities across trials were aligned 
with the theta phases calculated from simultaneously recorded LFP (CA1 theta) and were 
averaged (17-19).  

In Fig. 5D, the probability density of the decoded position at each time bin was aligned 
with the original position and head direction at which the spikes were sampled. In Fig. 4F, the 
most probable position was taken as the decoded position, i.e., 𝒙𝒙� =  argmax  𝑃𝑃(𝒙𝒙|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), to 
account for session-to-session variability. For the group analyses, we selected the sessions in 
which more than 4 predictive grid cells and more than 4 other types of grid cells were 
simultaneously recorded (n=25 sessions from 4 rats; Table S1). 
 
Theta cycle swapping method 

With regard to the theta sequence revealed in the analysis of Fig 5, we investigated 
whether the theta sequence was organized as a result of synchronized activity of cells within the 
theta cycle or as a result of independent activity of each cell (Fig. S9). To address this, we used a 
theta cycle swapping method. In this method, each spike of each cell is moved randomly to a 
theta cycle of ±k cycle apart (k=1 or 2), preserving theta phase at the spike time (Fig. S9B). We 
applied this theta cycle swapping method to the spikes of all three types of grid cells, and then 
we computed the theta sequence with the method described above using the surrogate datasets 
and compared it to the original data (Fig. S9; see also Fig. 5F; n=25 sessions from 4 rats; Table 
S1).  
 
Pairwise analysis of predictive grid cells and CA1 place cells 
To study the functional connectivity between predictive grid cells and CA1 place cells, we 
analyzed the relationship between information representation and spike timing between these 
cells. Specifically, we analyzed the difference in the positions of the spatial receptive fields in 
each cell pair and the difference in spike timing calculated from the CCG (Fig. S6A). Because 
grid cells and place cells often have multiple peaks in their place fields (or grid fields), 
calculations were performed for each peak of each cell of the cell pair (Fig. S6B). The 
computational procedure was as follows: (1) For each cell, we made a one-dimensional firing 
rate plot in the linearized position for each direction of each block and detected the peaks. (2) 
Focusing on one peak for each cell, we calculate CCGs using the spikes contained in each peak 
of the cell pair. If the number of spike pairs within ±50ms was more than 50 counts, the pair of 
the peaks was used for the successive analysis. (3) We tested whether the CCG peak of each 
peak of the pair had significantly high (i.e., significant functional connectivity) compared to the 
surrogate dataset. To this end, we used the spike jittering method (66). Briefly, spikes of one of 
the neurons were time jittered by -50 to 50 msec to generate a jittered cross-correlogram 
(jittered). By repeating the procedure 1000 times, the 99% confidence intervals for each bin (P = 
0.01) are calculated. If the CCG peak value exceeded the line, we considered it as significant (P 
< 0.01). The same analysis was also applied to the pairs of predictive and phase-precession grid 
cells and the pairs of predictive and phase-locked grid cells.  
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Fig. S1. Detailed schematic of the goal-directed behavioral task. 
(A) A photograph of the open field used in the task. The behavioral experiments were conducted
in an open field of 210×210 cm that was surrounded by 40cm height fences. Visual cues were
placed in the center of each fence in each direction.
(B) Schematic of the experimental room.
(C) Positions of possible reward locations. (Right) The table of all possible pairs of reward ports
in the task blocks.
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Fig. S2. Grid representation for future spatial information in the entorhinal cortex. 
Twelve examples of predictive grid cells (see also, Fig 1E). (Left) Firing rate maps (top), spiking 
events (red) on rat’s trajectories (gray) (middle), and their spatial autocorrelation (bottom), 
whose positional references were original and future projected. (Right top) Gridness scores as a 
function of reference positions. A positive position shift indicates a future position and a 
negative indicates a past position. (Right bottom) Firing rate modulation is by the head direction. 
The mean resultant length was indicated as r. 
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Fig. S3. Methods for analyzing firing rates and theta phases in the linearized positions. 
(A) Method for plotting firing rates and theta phases in the linearized positions. First, the two-
dimensional positional data were linearized by projecting a straight line between the start and
goal positions. The firing rate in the linearized positions was calculated by each direction for
each block. Similar to two-dimensional firing rate maps, a rate plot in the linearized position was
created by calculating the spike numbers divided by the occupancy time for each 0.01 bin of
normalized position, followed by applying smoothing with a convolution with a Gaussian kernel.
In a plot of the linearized positions, normalized position 1 corresponds to the length of one side
of the open field (i.e., 210 cm). We also created a one-dimensional rate plot aligned by the peaks
of the grid fields (right). First, we detected local peaks in the rate plot of each block and in each
direction. Then, we aligned each peak so that its position became the zero point and averaged the
overall detected peaks.
(B) The presence of theta phase precession in each neuron was assessed as follows: First, we
made a rate plot and theta phase plot aligned by the peaks of grid fields, as described above. The
standard deviation σ was calculated over the distribution centered on the peak of the rate plot.
The positions were divided into bins from -σ to +σ with a step of σ/5, and the spiking theta
phases were averaged in each bin. If the average phase was shifted more than 60 degrees from -σ
to +σ, we considered the presence of phase precession.
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Fig. S4. Representative phase-precession and phase-locked grid cells. 
(A) Three representative phase-precession grid cells (see also, Fig 2C). (Left) Firing rate maps
(top) and their spatial autocorrelation (bottom) at the original positions. (Second and third left)
Firing rate and spiking phases on theta oscillations in the linearized position in the example
block and all blocks (Fig. S3 for the method). (Forth left) Theta phase preference of the cells.
(Fifth left) Gridness scores as a function of reference positions. (Right) Firing rate modulation is
by the head direction. The mean resultant length was indicated as r.
(B) Three representative phase-locked grid cells (see also, Fig 2D).
The firing properties of these cells (A & B) are highly consistent with previous reports (13).
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Fig. S5. Comparison of optimal grid shift in each direction in the predictive grid cells 
(A) In the group analysis of the predictive grid cells, the optimal shift normalized by the grid
spacing was 0.27 ± 0.11 (mean ± SD) (Fig 3G). On the other hand, when considering the
hexagonal structure of the grid field, the grid spacing in the orthogonal axis is √3 times of that in
the main axis. Here, we tested whether predictive grid cells have the same or different optimal
shifts when running in the main and orthogonal axis directions. Since the north-south axis of the
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open field was the main axis for all animals in this study (Fig 3L), we quantified the difference in 
the optimal shift between the north-south and east-west directions. (Left) Schematic of the main 
and orthogonal axes of the grid fields. (Right) Orientation of the grid axes of the predictive grid 
cells (same of Fig. 3L left). 
(B) To estimate the optimal grid shift in each direction, we calculated cross-correlation of 
optimally shifted map of all direction and each unidirectional map, and quantified the offset of 
the cross-correlation peak from the center point. In the example shown here, the maps of cross-
correlation of the optimally shifted map and each unidirectional map also showed the grid 
structure, with its maximum peak shifted against the direction of travel.  
(C) Optimal grid shift in each direction, normalized by the grid spacing of the main axis. There 
were no significant differences of grid shift across running directions (P>0.05; ANOVA). The 
result showed that the optimal shift is tied to the grid spacing of the main axis, regardless the 
running direction. 
(D) Correlation-coefficient at the peak of cross correlation map in each direction. There were no 
significant differences of grid shift across running directions (P>0.05; ANOVA). 
(E) We verified whether merging the unidirectional maps with adding their optimal shifts 
reconstructs the optimally-shifted map in all directions.  
(F) The merged map with the unidirectional maps with adding their optimal shifts had a 
significantly higher gridness score than the map at the original position. However, the gridness 
score of the merged map was significantly lower than that calculated for the optimally shifted 
map in all directions. **P<0.01, ANOVA and post hoc Tukey-Kramer test. 
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Fig. S6. Layer identification of the MEC neurons. 
(A) Nissl-stained sections with electrode traces (indicated by a white dotted line) in the MEC (rat
o34).
(B) Layout of shanks and electrodes of the 128-channel silicon probe. The eight shanks are
spaced 150 µm apart, and 16 electrodes on each shank are staggered at intervals of 30 µm
vertically and 16.5 µm horizontally.
(C) Plots of averaged LFPs (black lines) superimposed on a CSD color map in the MEC. LFPs
were obtained from the center channels of all shanks. LFPs were filtered with the theta frequency
band (4-10 Hz) and were aligned to the troughs of the CA1 theta.
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(D) A two-dimensional CSD map of the MEC were constructed from all electrodes on the 
shanks. The averaged CSD at the trough timing (180°) of the CA1 theta is shown. Note that the 
anatomical boundaries between layers 1 and 2 correspond well with the reversal points of the 
CSD. 
(E) Histograms of the recorded positions of predictive (blue), phase-precession (red), and phase-
locked (green) grid cells. Predictive grid cells were mainly distributed in the relatively shallow 
positions of layer 3, and phase-locked grid cells were present in the relatively deep positions of 
layer 3. Phase-precession grid cells were mainly located in layer 2. 
(F) Nissl-stained sections with electrode traces of all nine rats. (Bottom) Histograms of the 
recorded positions of predictive (blue), phase-precession (red), and phase-locked (green) grid 
cells in each rat. 
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Fig. S7. Comparison of position projection methods. 
(A) We tested the methods of spatial shift for estimating the gridness for the future position. (i)
Projection on the rat trajectory with distance d, the method we used mainly in this study (Fig
1D). (ii) Accumulation along the trajectory. (iii) Projection on the tangential line of the rat
trajectory. (iv) Projection on the line extended in the head direction.
(B) The gridness scores calculated with (i) and (ii) were not significantly different, whereas the
gridness score with (i) were larger than those with (iii) or (iv). In this study, it was not possible to
determine whether (i) or (ii) was greater due to the relatively low curvature of the rats'
trajectories. **P<0.01, ANOVA and post hoc Tukey-Kramer test.
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Fig. S8. Comparison of time and position shift for future projection. 
(A) Firing patterns of a representative predictive grid cell, comparing time shift and position shift
methods for future projection. (Left) Firing rate maps (top) and their spatial autocorrelations
(bottom) at the original positions. (Middle) Firing rate maps, their spatial autocorrelation, and a
plot of gridness as a function of position shift. (Right) Firing rate maps, their spatial
autocorrelation, and a plot of gridness as a function of time shift.
(B) Optimal temporal shift in the predictive, phase-precession and phase-locked grid cells.
**P<0.001, ANOVA and post hoc Tukey-Kramer test.
(C) Gridness scores at optimal position and time shift of the predictive grid cells. The result
showed that the position shift was higher than the time shift in the predictive grid cells.
**P<0.01, paired t-test.
(D) We further investigated the relationship between positional and temporal shifts in the
predictive grid cells. To examine the effect of the size of the grid spacing on the spatial and
temporal shift, we sorted the predictive grid cells by their grid spacing and divided them into two
groups with large and small grid spacing. Then, the optimal position and time shifts were
compared between the two groups. If the grid shift of the predictive grid cell is tied to the grid
spacing, then the temporal shift should be larger in the cells with larger the grid spacing,
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assuming constant speed. On the other hand, if the grid shift is tied to temporal variables, then 
the spatial shift normalized by grid spacing should be smaller in the cells with the larger the grid 
spacing.  
(E) (Left) Grid spacing of the two groups of predictive grid cells sorted by their grid spacing.  
(Middle) Optimal position shift in cm (middle left) and normalized by grid spacing (middle right) 
of the predictive grid cells with larger and smaller grid cells. (Right) Optimal time shift of the 
predictive grid cells with larger and smaller grid cells. The result indicates that the grid shift of 
the predictive grid cells was tied to the grid spacing rather than the temporal variables. **P<0.01, 
paired t-test. 
(F) To examine the effect of running speed on spatial and temporal shift, spikes were sorted by 
speed in each predictive grid cell. If grid shift was tied to grid spacing, then the temporal shift 
should decrease at higher speed, assuming constant grid spacing. Conversely, if the grid shift is 
fixed to temporal variables, then the spatial shift normalized by grid spacing should increase at 
higher speeds. Regarding the sorting method, spike firings were sorted by speed in each 
predictive grid cell while preserving the positional information (SM). As shown here, there was 
an observed relationship between speed and rat position. To rule out the effect of position, we 
segmented the location into 6cm × 6cm meshes. Spikes were then sorted by speed in each mesh 
in each direction, dividing them into high and low-speed groups. Optimal position and time shifts 
were compared between these two speed groups. (Left) Speed at the rat’s position in the example 
session. Each dot represents the position in a 25.6 ms bin, and its color indicates the speed. 
(Right) Speed at which the spike event occurred in the example cell. Each colored dot represents 
the position of the spike events, and its color indicates the speed. Gray dots indicate positions 
where the cell did not fire. 
 (G) (Left) Speed at the spike events, sorted by their speed, in each predictive grid cell. (Middle) 
Optimal position shift normalized by grid spacing in spikes with higher and lower speed of the 
predictive grid cells. (Right) Optimal time shift in spikes with higher and lower speed of the 
predictive grid cells. **P<0.01, paired t-test. This result also showed that the grid shift of the 
predictive grid cells was tied to the grid spacing rather than the temporal variables. In the 
analysis in Fig. S8, we included the predictive grid cells that had a significant gridness score at 
the peak of both positional and temporal shifts (n = 168 cells).  
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Fig. S9. Effect of synchronization on theta sequence formation. 
(A) Hypotheses for the theta sequence analyzed in Fig 5. We examined whether the theta 
sequence was organized as a result of synchronized activity of cells within the theta cycle or as a 
result of independent activity of each cell. 
(B) To address the above problem, we developed the theta-cycle swapping method. In this 
method, each spike of each cell is randomly swapped to a theta cycle with ±k cycle apart (k=1 or 
2), preserving theta phase at the spike time. If the former model in (A) is correct, synchronization 
of spikes within the same theta cycles are important, so swapping theta cycle should result in 
reduction of decoding accuracy. On the other hand, if the latter model in (A) is correct, 
synchronization within a cycle is not important, so swapping spike times to a neighboring theta 
should not cause much change in decoding accuracy. 
(C) The effect on the rate map of predictive, phase-precession and phase-locked grid cells when 
theta swap method is applied to cells (example cells). Theta cycle swapping had only a minor 
effect on the rate maps at least when k = 1. 
(D) Decoded positional information (i.e., the argument of the maximum of probability densities) 
in the axis of the head direction as a function of theta phases (n = 25 sessions; SM; see also Fig. 
5F). Blue lines indicate the decoding data with predictive, phase-precession, and phase-locked 
grid cells, and gray lines indicate those with theta swapping of spikes of these cells (mean ± 
SEM). A thick blue line above the plots indicates a segment with significantly higher values (P < 
0.01; permutation test; SM). Theta-swapped data had a significantly lower ability to decode the 
future positions around the 180° of theta oscillation than the original data. The result indicates 
that synchronized activity of cells within the theta cycle are critical for theta sequence formation. 
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Fig. S10. Functional connectivity between predictive grid cells and CA1 place cells. 
(A) Schematic of the relationship between spatial receptive fields and spike timing of predictive
grid cells and CA1 place cells (see also Fig. 5G-H).
(B) If predictive grid cells and/or place cells had multiple peaks in the place fields (or grid
fields), calculations were performed for each peak of each cell of the cell pair. All possible peak
pairs were calculated, regardless of the preceding or following positional relationships. To
estimate the peak difference, we used the one-dimensional rate plot calculated from the original
positions.  (C) The relationship between spike timings and place field distances of the pairs of
predictive grid cells and CA1 place cells (i-ii, three representative pairs). (Left) Firing rate maps
and autocorrelations of predictive grid cells and CA1 place cells. (Middle) Firing rate plots and
spiking phases of predictive grid cells (blue) and CA1 place cells (red) in the linearized
positions. (Right) CCGs of predictive grid cells and CA1 place cells from the selected positional
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segments indicated in bottom insets. The values of CCG time lag and peak difference of firing 
rate peaks are also indicated. 
(D) Group data of the relationships between spike timings and place field distances of the pairs 
of predictive grid cells and CA1 place cells (left), the pairs of predictive and phase-precession 
grid cells (middle), and the pairs of predictive and phase-locked grid cells (right). Each dot 
represents a CCG of a pair of single place fields of predictive grid cells and CA1 place cells (n = 
3157 peak pairs from 1446 cell pairs of predictive grid cells and CA1 place cells), those of 
predictive and phase-precession grid cells (n = 6838 peak pairs from 2055 cell pairs of predictive 
and phase-precession grid cells), or those of predictive and phase-locked grid cells (n = 1297 
peak pairs from 599 cell pairs of predictive and phase-locked grid cells). Colored and gray, 
significant and non-significant CCG peaks, respectively. (P<0.01, shuffling statistics; SM).  
(E) Color plot of D. Only significant CCG peaks are selected.  
(F) The relationship between the distance of place fields and time lag in CCG of the pairs of 
predictive grid cells and CA1 place cells (left), the pairs of predictive and phase-precession grid 
cells (middle), and the pairs of predictive and phase-locked grid cells (right). 
(G) The relationship between the distance of place fields and time lag in CCG of the pairs of 
predictive grid cells and CA1 place cells, calculated for each running direction. The relations of 
the distance of place fields and time lags were not significantly different across the directions 
(P>0.05; two-way ANOVA).  
(H) Ratio of the significant peaks of the CCGs of the pairs of predictive grid cells and CA1 place 
cells, the pairs of predictive and phase-precession grid cells, and the pairs of predictive and 
phase-locked grid cells (right). Colored bars indicate the pairs in which predictive grid cells fired 
before CA1 place cells (blue), phase-precession grid cells (red), or phase-locked grid cells 
(green) (i.e., CCG peak was at positive time lag), gray bars indicate the opposite case (i.e., CCG 
peak was at negative time lag). Clopper-Pearson confidence intervals (CIs) for 95% were shown 
(*P<0.05, **P<0.01).  
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Table S1. Basic physiology statistics. 

Goal-direction task behavior 
Rat ID o28 o30 o31 o32 o34 o36 Total 
Total sessions 13 15 6 7 21 8 70 
Total RS neurons in MEC 1) 524 1048 241 425 1356 249 3843 
Predictive grid cells 2) 48 61 11 20 113 52 305 
Phase-precession grid cells 3) 140 48 11 12 327 20 558 
Phase-locked grid cells 4) 38 2 48 8 122 23 241 
Sessions for decoding 5) 5 3 13 4 25 
Figures that include the data Figs 1, 2, 3, and 5; Figs S2-S10 

A series of goal-directed and random-foraging tasks 
Rat ID o44 o45 o46 Total 
Total sessions 9 17 7 33 
Total RS neurons in MEC 1) 325 850 261 1436 
Predictive grid cells 2) 18 83 42 143 
Phase-precession grid cells 3) 5 30 9 44 
Phase-locked grid cells 4) 17 18 13 48 
Figures that include the data Fig. 4; Fig S6 

1) MEC regular spiking (RS) neurons were defined as those with mean firing rates between 0.8 and 7 Hz and with
spatial information higher than 0.8 bit/spike (SM).

2) Predictive grid cells were defined as: (i) The gridness score at the original location is not significant (P ≥ 0.05)
compared to the shuffled data. (ii) When the gridness score is plotted as a function of location shift, there is a
peak location at a future location, and the gridness score at the peak location is significant (P < 0.05). (iii) There
is no phase precession, and theta phase preference is 180°± 60° with a peak-to-baseline ratio greater than 0.05
(SM).

3) Phase-precession grid cells were defined as (i) the gridness score at the original location is significant (P < 0.05)
compared to the shuffled data, and (ii) phase precession is present (SM).

4) Phase-locked grid cells were defined as (i) the gridness score at the original location is significant (P < 0.05)
compared to shuffled data, and (ii) there is no phase precession, and theta phase preference is 300° ± 60° (SM).

5) Sessions in which more than 4 predictive grid cells and more than 4 grid cells were simultaneously recorded.
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