
LETTER Communicated by Terrence Sejnowski

Advantages of Persistent Cohomology in Estimating Animal
Location From Grid Cell Population Activity

Daisuke Kawahara
8361405631@edu.k.u-tokyo.ac.jp
Shigeyoshi Fujisawa
shigeyoshi.fujisawa@riken.jp
Department of Complexity Science and Engineering, University of Tokyo, Kashiwa,
Chiba 277-8563, Japan, and Laboratory for Systems Neurophysiology, RIKEN Center
for Brain Science, Wako, Saitama 351-0198, Japan

Many cognitive functions are represented as cell assemblies. In the case
of spatial navigation, the population activity of place cells in the hip-
pocampus and grid cells in the entorhinal cortex represents self-location
in the environment. The brain cannot directly observe self-location infor-
mation in the environment. Instead, it relies on sensory information and
memory to estimate self-location. Therefore, estimating low-dimensional
dynamics, such as the movement trajectory of an animal exploring its en-
vironment, from only the high-dimensional neural activity is important
in deciphering the information represented in the brain. Most previous
studies have estimated the low-dimensional dynamics (i.e., latent vari-
ables) behind neural activity by unsupervised learning with Bayesian
population decoding using artificial neural networks or gaussian pro-
cesses. Recently, persistent cohomology has been used to estimate latent
variables from the phase information (i.e., circular coordinates) of man-
ifolds created by neural activity. However, the advantages of persistent
cohomology over Bayesian population decoding are not well understood.
We compared persistent cohomology and Bayesian population decoding
in estimating the animal location from simulated and actual grid cell pop-
ulation activity. We found that persistent cohomology can estimate the
animal location with fewer neurons than Bayesian population decoding
and robustly estimate the animal location from actual noisy data.

1 Introduction

In neuroscience, advances in measurement techniques have made it pos-
sible to simultaneously record more than 700 neurons in silicon probes
(Jun et al., 2017; Steinmetz et al., 2019) and more than 16,000 neurons in
a two-photon microscope (Ota et al., 2021). Behind the high-dimensional
neural activity, low-dimensional dynamics are hidden (Pandarinath et al.,
2018; Gardner et al., 2022). Low-dimensional dynamics contain important
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386 D. Kawahara and S. Fujisawa

information that is not directly observable from higher-dimensional neu-
ral activity, such as task variables, the self-position in the environment, and
sensory stimulus variables, such as the angle of visual stimuli. Therefore,
estimating low-dimensional dynamics from only high-dimensional neural
population activity is an important issue in neuroscience.

When an animal moves on a two-dimensional plane, grid cells in the
entorhinal cortex fire at multiple positions, creating a triangular lattice in
the plane (Hafting et al., 2005). Thus, information about self-position in the
environment is represented by the population activity of grid cells. In this
study, we estimate the animal location in the environment from the grid cell
population activity without using the actual animal location information.

In previous studies, Bayesian population decoding using gaussian pro-
cesses or artificial neural networks has estimated low-dimensional dynam-
ics from high-dimensional neural activity. For example, a gaussian process
method estimated the rat’s location in its environment, a low-dimensional
dynamics, from about 30 place cells recorded from the rat’s hippocampus
(Wu et al., 2017). Artificial neural network–based methods estimated the
angle of visual stimuli, a low-dimensional dynamics, from the activity of
63 neurons recorded from the macaque primary visual cortex, the rat’s lo-
cation on a one-dimensional linear line from the activity of 100 grid cells
generated by the simulations (Gao et al., 2016), and the monkey’s hand tra-
jectory from the activity of about 200 neurons recorded from the monkey’s
motor cortex (Pandarinath et al., 2018).

Another approach to Bayesian population decoding is a method that
applies topology called persistent cohomology (Zomorodian & Carlsson,
2005). We describe an overview of persistent (co)homology below. In per-
sistent cohomology, the topological structure of the data is examined in an
n-dimensional space in which high-dimensional (n-dimensional) neural ac-
tivity data are distributed. We consider each data point as an n-dimensional
ball (or sphere) and gradually increase the balls’ radius (see Figure 1A). The
graph in Figure 1B is called barcode. In the vertical axis, Hk is called the
homology group. Geometrically, it captures the presence of n-dimensional
holes or voids in the topological space. Mathematically, it is defined as
Hk = Zk/Bk, where Zk is the group of k-dimensional cycles and Bk is the
group of k-dimensional boundaries (see section 4). The horizontal axis of
the graph represents the radius of the n-dimensional balls. The length of
the green line in the barcode indicates how long the hole in the data struc-
ture persists as the radius of the n-dimensional balls is increased. As the
radius of the n-dimensional balls of data points is gradually increased, all
the data points overlap to form a one-dimensional hole H1, indicated by the
red circle (see Figure 1A). The radius of the n-dimensional balls at this point
is the start of the green line indicated by the arrow of H1 (see Figure 1B). As
the radius of the n-dimensional balls is further increased in Figure 1A, there
is a timing when the one-dimensional hole H1 disappears, as shown by the
last arrow, and at this time, the green line indicated by the arrow of H1 is
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Persistent Cohomology for Decoding Location From Grid Cells 387

Figure 1. Schematic pictures of persistent cohomology. (A) Conceptual diagram
of the change in data structure as the ball radius of the data points increases.
Each data point corresponds to neural activity at each time point. (B) Barcode.
Hn denotes the n-dimensional hole created by the set of data balls. As the ra-
dius of the data balls is increased, there is a time when the n-dimensional hole
appears, which is the start time of the green line. The length of the green line
corresponds to the duration of the n-dimensional hole as the radius of the data
balls increases. (C) Example of topological classification of data structures based
on the number of n-dimensional holes Hn. The numbers in the table are called
Betti numbers (see section 4).

ended (see Figure 1B). The longer the barcode line, the more the hole re-
flects the topological features of the data structure. Short barcode lines are
a weak topological feature of the data structure or reflect noise in the data.
Depending on how many holes H0, H1, H2 in each dimension have long
barcode lines, we can find the topological data structure (see Figure 1C).
The Betti number βk is the rank of the homology group Hk and represents
the number of k-dimensional holes in the topological space. For instance, β0

represents the number of connected components, β1 represents the number
of loops, β2 represents the number of voids, and so on. In Figure 1B, the
long lines indicated by the arrows are β0 = 1, β1 = 1, β2 = 0. Thus, we can
find that the topological structure of the data is ring-shaped (see Figure 1C).

Hn contains the phase information (i.e., the value from 0 to 2π of each cir-
cular coordinate) of n-dimensional holes. We estimate the low-dimensional
dynamics from the phase information of the manifold with n-dimensional
holes formed by the high-dimensional neural activity data. However, per-
sistent cohomology does not allow us to estimate low-dimensional dy-
namics from any high-dimensional neural activity. As shown in section 2,
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388 D. Kawahara and S. Fujisawa

persistent cohomology cannot estimate the animal location from the place
cell population activity. The persistent cohomology method is valid only
when low-dimensional dynamics are reflected on the manifold phase
formed by high-dimensional neural population activity.

In previous studies, persistent cohomology has found a ring-shaped data
structure β0 = 1, β1 = 1, β2 = 0 in the population activity of place cells and
head orientation cells (Dabaghian et al., 2012; Babichev et al., 2018; Akhti-
amov et al., 2021; Rybakken et al., 2019; Chaudhuri et al., 2019). In partic-
ular, in the case of head direction cells, the animal head direction can be
estimated from 0 to the 360-degree phase of the ring-shaped data structure.
Also, persistent cohomology has revealed a two-dimensional torus struc-
ture β0 = 1, β1 = 2, β2 = 1 in the activity of about 150 grid cells recorded
from a rat exploring a two-dimensional plane (Gardner et al., 2022). It was
also found that the animal location in 2D space is reflected in the phase of
the 2D torus. Based on this fact, Kang et al. (2021) estimated animal location
in the 2D plane by applying persistent cohomology to the simulated grid
cell population activity.

Grid cells in rat and human brains are also found in 3D space (Grieves
et al., 2021; Kim & Maguire, 2019). However, it is not known what the topo-
logical data structure is for the grid cell population activity while an animal
moves through 3D space. In this study, we also address this issue through
simulations. By applying persistent cohomology to the grid cell population
activity generated by simulation, we found a 3D torus as a low-dimensional
dynamics. Furthermore, we estimated the animal location in 3D space
from the phase information of the three circular coordinates of the 3D
torus.

While there are two methods for finding latent variables behind neu-
ral population activity, Bayesian population decoding, and persistent
cohomology, it is unclear which is superior in estimating latent variables.
We show that persistent cohomology can more accurately estimate the an-
imal location (i.e., latent variables) from the simulated grid cell population
activity in 2D and 3D space with fewer neurons than Bayesian population
decoding. We also show that persistent cohomology can estimate the ani-
mal location more robustly than Bayesian population decoding for actual
grid cell population activity.

2 Results

First, we compare persistent cohomology and Bayesian population decod-
ing in estimating animal location in 2D space from the grid cell population
activity. Next, we compare them in 3D space.

2.1 Estimation of Animal Location from Grid Cells in 2D Space. Fig-
ure 2A shows an example of the grid cell’s receptive field, Figure 2B shows
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Persistent Cohomology for Decoding Location From Grid Cells 389

Figure 2. Estimation of animal location by Bayesian population decoding from
simulated grid cells. (A) Receptive field of a grid cell. Other receptive fields of
100 grid cells are shown in Figure S2. (B) Raster plots of simulated 100 grid cells
for 5000 seconds. (C) Estimation of animal location by previous methods. Here
we show the best estimation results out of six experiments for each method. We
changed the initial values of the model’s parameters in each experiment. We
set the random seeds to 42, 43, 44, 45, 46, and 47 in the six experiments. The
hyperparameters of each model are the same as in the place cell experiment.
See section 4.

the simulated population activity of 100 grid cells for 5000 seconds, and
Figure 2C shows the estimation of animal location by the Bayesian popula-
tion decoding methods.

PLDS (Macke et al., 2011), PfLDS (Gao et al., 2016), LFADS (Pandari-
nath et al., 2018), and P-GPLVM (Wu et al., 2017) use Euclidean space for
latent variables and do not estimate well. On the other hand, mGPLVM
(Jensen et al., 2020) and feaLVM (Bjerke et al., 2022) assume a 2D torus
for the latent variables and can successfully estimate the animal location.
The success is because the population activity space of grid cells is a torus
(Gardner et al., 2022), and mGPLVM and feaLVM use the appropriate latent
space.

Next, we used persistent cohomology to estimate the animal location in
2D space from grid cells in Figure 2B.

As shown by the arrows in Figure 3A, the long lines of the barcode
indicating the features of the data structure are β0 = 1, β1 = 2, β2 = 1,
that is, a two-dimensional torus structure (see Figure 1C), which can be
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390 D. Kawahara and S. Fujisawa

Figure 3. Estimation of animal location by persistent cohomology from simu-
lated grid cells. (A) Barcode. (B) 2D torus structure. Each point corresponds to
R

100 → R
3 neural activity at each time. (C) Torus phase 0 to 360 degrees and

animal location at each time. (D) Unwrapping the torus circular coordinates.
(E) Left: Estimated animal location after transformation to Cartesian coordi-
nate or physical coordinate. (E) Right: Animal location estimated from the torus
phase information. The circular coordinates t, p of the torus created by the activ-
ity of grid cells are not Cartesian in the physical world but oblique coordinates,
as shown in panel C. Therefore, if t, p are set to Cartesian coordinates, the es-
timation results become oblique. (F) R2 values with error bars. For the method
using persistent cohomology, we show the result for N = 100 in sparse circular
coordinates. (G) The result of sparse circular coordinates. N is the number of
subsets of 5000 data points used to obtain the circular coordinates.
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Persistent Cohomology for Decoding Location From Grid Cells 391

visualized in three-dimensional space using the estimated circular coordi-
nates t, p (0 ≤ t ≤ 2π, 0 ≤ q ≤ 2π ) by persistent cohomology as follows,

x = a cos t + b cos p cos t,

y = a sin t + b cos p sin t,

z = b sin p, (2.1)

where a, b are the radius of the large and small circles of the 2D torus S1 × S1,
respectively. Generally, the circular coordinates are calculated using persis-
tent cohomology (Kang et al., 2021; Perea, 2018). Note that our letter’s de-
coding by persistent cohomology also includes circular coordinates. (See
section 4 for how to obtain the circular coordinates from persistent coho-
mology.) Figure 3B shows a 2D torus, the low-dimensional dynamics ob-
tained from a high-dimensional (n = 100) grid cell activity. Each point in
the torus corresponds to neural activity at each time point per second. The
phase of the torus corresponds to the animal location and the scale of the
grid pattern of the grid cell’s receptive field (see Figure 3C).

Next, we considered estimating the animal location from the torus circu-
lar coordinates t, p. However, there are two problems with the estimation.
The first is that the animal location is not uniquely determined due to the
periodicity of the torus (see Figure 3C). Therefore, to eliminate the periodic-
ity, we added 2π to the value of current circular coordinates for each round
of the torus and subtracted 2π for each round of the torus in the opposite
direction (see section 4.) Figure 3D shows the result of this unwrapping of
the torus periodicity. The second problem is that the unwrapped circular
coordinates tunwrap, punwrap are not Cartesian coordinates. The direction in
which the circulars coordinate t moves is tilted—120 degrees from the hori-
zontal axis in our experiments (see Figure 3C). Therefore, if the unwrapped
circular coordinates tunwrap, punwrap are considered in the Cartesian coordi-
nates directly, the estimated animal movement trajectory will be tilted (see
Figure 3D, right). Therefore, we used a matrix to transform the unwrapped
circular coordinates tunwrap, punwrap into Cartesian coordinates tcart, pcart (see
Figure 3E, bottom).

Moreover, we obtained the parameters of scaling a, translation b, and
rotation θ to align the tcart, pcart with the animal trajectory coordinates
xtrue, ytrue by minimizing the following equation,

arg min
a,b,θ

∥∥∥∥∥
(

xtrue

ytrue

)
− a

(
cos θ − sin θ

sin θ cos θ

) (
tcart

pcart

)
+

(
bx

by

)∥∥∥∥∥
2

. (2.2)

Through these operations, the persistent cohomology method could accu-
rately estimate the animal location (see Figure 3F). Scaling and translation
were performed for Bayesian population decoding as well. For mGPLVM
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392 D. Kawahara and S. Fujisawa

and feaLVM using toroidal latent space, the estimated circular coordinates
were unwrapped and converted to Cartesian coordinates like for persistent
cohomology.

Previous studies have used the explained deviance (Gardner et al., 2022)
or the R2 value (Wu et al., 2017) as a measure to evaluate the estimated
latent variables. Explained deviance was computed to measure how well
a Poisson generalized linear model (GLM) fitted to the spike count was at
representing the data using either the toroidal coordinates or the tracked
position as regressors (Gardner et al., 2022). However, since the objective of
our study is to estimate the latent variable, animal location, we evaluated
using the R2 value, which directly compares the estimated latent variable
to the animal location. Figure 3E shows the R2 value calculated using the
estimation results and the actual animal location. The R2 value is defined as
follows,

R2 = 1 −
∑

i(si − ŝi)2∑
i(si − s̄)2 , (2.3)

where si is the animal location at time ti, ŝi is the estimated animal location
at time ti, and s̄ is the average of the animal location. The closer R2 is to 1,
the closer the estimated value is to the actual animal location.

In addition, by using a technique called sparse circular coordinates
(Kang et al., 2021; Perea, 2020; see section 4) in the persistent cohomology
method, we could obtain circular coordinates from the subset of data points,
N = 100 out of 5000 timepoints (see Figure 3G).

We then compared the estimation results of persistent cohomology and
Bayesian population decoding using toroidal latent space (mGPLVM and
feaLVM) for the number of simulated grid cells and timepoints. Persistent
cohomology could accurately estimate the animal location from fewer neu-
rons than Bayesian population decoding (see Figures 4A and 4B). When the
total timepoints used for estimation were large, persistent cohomology was
more accurate than Bayesian population decoding in estimating the animal
location. However, when the total timepoints were small, Bayesian popula-
tion decoding showed better estimation results (see Figures 4C and 4D).

Next, we examined the correspondence between the phase of the torus
and the scale of the grid patterns of the receptive field of grid cells. The
grid pattern’s scale in the grid cell’s receptive field decreases from ventral
to dorsal in the entorhinal cortex (Hafting et al., 2005). We applied persis-
tent cohomology to the simulated neural activity of 100 grid cells for each
small and large grid pattern scale. We confirmed that the phase of the torus
corresponds to the scale of the grid pattern of the receptive field (see Fig-
ure 5). The directions of circular coordinates p, t of the torus correspond to
the orientations of the wavefronts of the grid patterns.

Finally, we estimated the rat’s location from the neural activity of 149
grid cells recorded from the rat’s entorhinal cortex during exploration on
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Persistent Cohomology for Decoding Location From Grid Cells 393

Figure 4. Comparison of persistent cohomology and Bayesian population de-
coding for number of simulated grid cells and timepoints. (A) R2 values against
the number of grid cells used for decoding. The N of sparse circular coordinates
in persistent cohomology was set to 1000 for all numbers of neurons. (B) Es-
timated animal trajectory against the number of grid cells used for decoding.
(C) R2 values against the total timepoints used for decoding. For timepoints
less than 1000, N of sparse circular coordinates in persistent cohomology was
set to the same value as timepoints. N at 3000 timepoints was set to 1000.
(D) Estimated animal trajectory against the total timepoints used for decoding.
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394 D. Kawahara and S. Fujisawa

Figure 5. Correspondence between the circular coordinates p, t of a 2D torus
and the simulated grid patterns. Regardless of the grid pattern scale, the direc-
tions of the circular coordinates t, p created by the grid cells’ activity correspond
to the directions of the wavefronts of the grid patterns indicated by the parallel
lines. Other receptive fields of grid cells are shown in Figure S3. (A) Small grid
scale. (B) Large grid scale.

the 2D plane (Gardner et al., 2022) (see Figure S5). We confirmed by persis-
tent cohomology that the population activity of grid cells forms a 2D torus
and that the torus phase reflects the rat’s location (see Figure 6A). We esti-
mated the rat’s location from the torus phase using the same procedure as in
the simulation (see Figure 6B). In sparse circular coordinates, we calculated
the circular coordinates using a subset of N = 1000 out of 5000 total time-
points. The estimated result is smaller than the actual rat movement width
in the y-axis (i.e., the vertical axis in the 2D plane). However, the timing of
the vertical movement is almost identical. On the x-axis (i.e., the horizontal
axis in the 2D plane), the estimated results almost coincide with the actual
movement trajectory of the rat. One possible reason for the discrepancy in
the y-axis is that the actual grid pattern of the rat’s gird cell is slightly dis-
torted than the grid pattern generated by the simulation (see Figure S5).
For the actual grid cells data, persistent cohomology could estimate the
animal location more accurately than Bayesian population decoding (see
Figure 6C).

2.2 Estimation of Animal Location from Grid Cells in 3D Space.
Experiments using fMRI indicate that the activity of grid cells in the en-
torhinal cortex when humans are exploring in 3D space is a face-centered
cubic lattice (Kim & Maguire, 2019). Therefore, we generated by simula-
tion the activity in 20,000 s of 100 grid cells firing at the positions of a face-
centered cubic (FCC) lattice. Figure 7A shows the raster plots of grid cells’
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Persistent Cohomology for Decoding Location From Grid Cells 395

Figure 6. Estimation of rat’s location from the neural activity of 149 grid cells
recorded from the rat’s entorhinal cortex. (A) Torus phase and animal location
at each time point. (B) Comparison of actual rat’s trajectory (blue) and estimated
rat’s trajectory (red). (C) R2 values with error bars. The experimental conditions
are the same as in the simulation experiments except for the input data.

activity. Figure 7B (top) shows the receptive field of a grid cell firing at the
positions of an FCC lattice. After applying persistent cohomology to the
grid cell population activity, we found β0 = 1, β1 = 3, β2 = 3, β3 = 1 (see
Figure 7C). This is topologically equivalent to a three-dimensional torus
(Matveev, 2004; Bombin & Martin-Delgado, 2007).

The circular coordinates of the 3D torus (i.e., grid coordinates in Figure 8)
by persistent cohomology reflect the grid patterns of the receptive field (see
Figure 8A). However, mGPLVM and feaLVM could not estimate the circular
coordinates well, and the unwrapping did not work (see Figure 8B).

As in the 2D case, for each of the three circular coordinates t, p, q of the
3D torus, we performed a 360-degree addition operation for each round
of the torus and a 360-degree subtraction operation for each round in the
opposite direction (see Figure 8B). After this unwrapping, we estimated
the animal location xest, yest, zest in 3D space from the intersection of three
planes with normal vectors for each of the unwrapped circular coordi-
nates tunwrap, punwrap, qunwrap (see Figure 8C). Moreover, we obtained the
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396 D. Kawahara and S. Fujisawa

Figure 7. Estimation of animal location in 3D space by persistent cohomology
from simulated grid cells. (A) Raster plots of simulated 100 grid cells for 5000
seconds. (B) Top: A receptive field of a grid cell firing at the positions of a face-
centered cubic lattice. Bottom: A receptive field of a grid cell firing at the posi-
tions of a hexagonal closely packed lattice. The receptive fields of other grid cells
are shown in Figure S6 (C) Barcode. β0 = 1, β1 = 3, β2 = 3, β3 = 1. (D) Compar-
ison of actual animal location (blue) and estimated animal location (orange).
N = 1000 in sparse circular coordinates. The number of grid cells = 100 and the
timepoints = 20,000. (E) R2 value at different timepoints and number of grid
cells used for estimation. (F) Barcodes for population activity of grid cells firing
at positions of hexagonal closely packed (HCP) and face-centered cubic (FCC).
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Persistent Cohomology for Decoding Location From Grid Cells 397

Figure 8. Correspondence between the circular coordinates (i.e., grid coordi-
nates) p, q, t of the 3D torus and the simulated grid patterns. (A) As in 2D, the
axis p, q, t of the 3D torus created by the grid cells’ activity corresponds to the
direction of the wavefront of the grid pattern indicated by the parallel lines.
(B) Unwrapping the 3D torus circular coordinates. (C) Schematic diagram of the
estimated animal location based on the intersection of the three planes with 3D-
torus circular coordinates as normal vectors, respectively. The star represents
the current estimated animal location, and the black dotted line represents the
intersection of the two planes.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/3/385/2335990/neco_a_01645.pdf by R
IKAG

AKU
 KEN

KYU
JO

 LIBR
AR

Y user on 02 Septem
ber 2024



398 D. Kawahara and S. Fujisawa

parameters of scaling a and translation b to align with the animal trajectory
xtrue, ytrue, ztrue by minimizing the following equation:

arg min
a,b

∥∥∥∥∥∥∥
⎛
⎜⎝

xtrue

ytrue

ztrue

⎞
⎟⎠ − a

⎛
⎜⎝

xest

yest

zest

⎞
⎟⎠ +

⎛
⎜⎝

bx

by

bz

⎞
⎟⎠

∥∥∥∥∥∥∥
2

. (2.4)

Figure 7D shows the estimated animal location after the above scaling and
translation. Figure 7E shows the R2 value for the total timepoints used for
decoding and the number of grid cells.

We also used persistent cohomology to analyze the population activity
of grid cells firing at the hexagonal closely packed (HCP) positions shown
in Figure 7B (bottom). However, we did not find a 3D torus like the FCC
(see Figure 7F).

2.3 Applying Persistent Cohomology to the Place Cell Population
Activity. Previous studies indicated that the manifolds formed by place
cell population activity reflect the topological shape of the environment
(i.e., global features of the environment) (Curto & Itskov, 2008; Curto,
2017). We applied persistent cohomology to the place cell population
activity.

Figures 9A to 9D (upper left) show the movement trajectory of the an-
imal for 10,000 seconds within four different forms of environment. The
upper right of the panels shows the results of dimensional reduction of
100 place cell activities into 3D space by UMAP (McInnes et al., 2018). The
manifold formed by the activity of place cells reflects the shape of the en-
vironment. From the barcode, we see that β0 = 1, β1 = 0, β2 = 0 for the
square and E-shape arenas; β0 = 1, β1 = 1, β2 = 0 for the O-shape arena;
and β0 = 1, β1 = 2, β2 = 0 for the eight-shape arena (see Figure 9B). In the
eight-shape arena, there are large and small holes, and this is to examine
whether the hole size is reflected in the manifold created by the place cell
population activity. In this experiment, there was little difference in the H1

duration of the barcode reflecting the large and small holes. Therefore, we
did not find detailed information about the shape of the environment in
the manifold created by the place cell population activity. Figures 9C and
9D show the values of the circular coordinates at each time calculated using
persistent cohomology, assigned to the animal location and the neural ac-
tivity space by UMAP. The two circular coordinates estimated using persis-
tent cohomology were able to characterize the two holes in the eight-shape
arena with 0 to 2π , respectively.

Figure 9E shows that persistent cohomology could capture topological
features of the environment with fewer neurons than Bayesian population
decoding.
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Persistent Cohomology for Decoding Location From Grid Cells 399

Figure 9. Persistent cohomology is applied to the simulated population activ-
ity of place cells. We can see that the topological shape of arena is reflected in
the manifold created by place cells’ activity. (A) Square-shape arena. (B) E-shape
arena. (C) O-shape arena. (D) Eight-shape arena. For panels C and D we mapped
the values of 0 to 2π at each time of the one-dimensional circular coordinate
found by persistent cohomology from the population activity of 100 place cells
to the animal location and to the neural activity space dimensionally visual-
ized by UMAP. (E) Relationship between the circular coordinates estimated by
mGPLVM, feaLVM, and persistent cohomolgy for different numbers of place
cells and the animal location.

3 Discussion

The main contributions of this study follow:

• We have demonstrated the advantage of persistent cohomology over
Bayesian population decoding in estimating the animal location from
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400 D. Kawahara and S. Fujisawa

the grid cell population activity. In the simulation, persistent coho-
mology could estimate the animal location in 2D with fewer neurons
than Bayesian population decoding (see Figure 4). For the actual grid
cell population activity, persistent cohomology could also estimate
the animal location more accurately than Bayesian population decod-
ing (see Figure 6).

• In the simulation, persistent cohomology found that the grid cell pop-
ulation activity on a face-centered cubic lattice of an animal moving
in 3D space results in a 3D torus structure (see Figure 8). Persistent
cohomology also estimated the circular coordinates of the 3D torus
more accurately than Bayesian population decoding and accurately
estimated the animal location in 3D space (see Figure 7D).

• Using persistent cohomology, we found that in 3D space, the grid
cell population activity firing at the location of the hexagonal closely
packed does not have clear circular coordinates like a 3D torus, mak-
ing it difficult to estimate the animal location (see Figure 7F).

• In the place cell population activity, we showed that persistent coho-
mology can estimate the environment’s topology with fewer neurons
than Bayesian population decoding (see Figure 9).

In Figure 6C, persistent cohomology is more robust than Bayesian popu-
lation decoding in estimating animal location from the population activity
of real grid cells, including noise. It is possible that the animal location can
be estimated for other modules of real grid cells, as well as in simulation
results.

Although we were able to estimate the animal location from the activity
of grid cells using the persistent cohomology method, there are still some
problems.

The first issue is that, as shown in section 2, we could not estimate the an-
imal location from place cell activity using the persistent cohomology. The
previous method using gaussian processes has been able to estimate the an-
imal location from place cells’ activity to some extent (see Figure S9). It may
be possible to determine the detailed shape of the environment by consid-
ering the dynamics of the short barcode lines as well as the long barcode
lines, a subject for future work.

The second issue is that we used the actual animal position information
to convert the coordinate system t, p of the phase of the 2D torus into a
Cartesian coordinate system. There are four possible angles between the
circular coordinates t, p: ±120 degrees and ±60 degrees. The transformation
matrix to the Cartesian coordinate system was obtained in this experiment
based on the animal location information. A possible approach that does
not use this information is to identify the direction of animal movement by
combining it with the activity of the head orientation cells (see Figures S7
and S8).
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Persistent Cohomology for Decoding Location From Grid Cells 401

The third issue is that we could not understand the relationship between
the direction of the wavefronts of grid pattern in 3D space and the direction
of the circular coordinates t, p, q of the 3D torus. In the 2D space, there were
four possible angles (±120 and ±60 degrees) between the circular coordi-
nates t, p, which corresponded to the direction of wavefronts of the grid
pattern. Investigating the possible angles between the circular coordinates
t, p, q in the 3D space is work for the future.

The last issue is that while persistent cohomology could estimate the
animal location more accurately than Bayesian population decoding for
small numbers of neurons, persistent cohomology was inferior to Bayesian
population decoding for small numbers of total timepoints. It is also fu-
ture work to understand theoretically why persistent cohomology is bet-
ter than Bayesian population decoding for small numbers of neurons and
why Bayesian population decoding is better for small numbers of total
timepoints.

In the previous study, the P-GPLVM can consistently attain R2 values
> 0.8 on simulated place cell data (Wu et al., 2017). Although the P-GPLVM
in our experiment had R2 > 0.8 on the horizontal axis (see Figure S9D), the
R2 value on the vertical axis is less than 0.8. This may be due to differences
in the shape of the maze and the firing patterns of place cells used in the
simulation. Also, the previous study with R2 > 0.3 for grid cells was for
animals moving on a one-dimensional track (Wu et al., 2017), while our
experiment is two-dimensional and the R2 value is smaller than 0.3 (see
Figure 3F).

3.1 Applications of Persistent Cohomology. In addition to the repre-
sentation of animal location, grid cells can also represent social relations
(Park et al., 2021), the concept of things (Constantinescu et al., 2016), the
visual sense (Staudigl et al., 2018; Killian et al., 2012) and smell (Bao et al.,
2019), word meaning (Viganò et al., 2021), and mental simulation (Bellmund
et al., 2016). This information represented by grid cells is expected to form
the dynamics on the torus. Higher-order cognitive functions, such as the
concept of objects, may be represented by a torus structure of three or more
dimensions. Similar to the estimation of animal location, it would be pos-
sible to estimate the dynamics of cognition from the phase information of
the higher-dimensional torus.

In addition, grid cells that represent location information are found not
only in the entorhinal cortex but also in the secondary visual cortex (Long
et al., 2021), somatosensory cortex (Long & Zhang, 2021), cingulate gyrus
(Jacobs et al., 2013), hippocampal plateau (Boccara et al., 2010), and medial
prefrontal cortex (Doeller et al., 2010). Persistent cohomology may help in-
vestigate how location information is shared and represented among brain
regions.
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4 Materials and Methods

The source code used in the experiment is available at https://drive
.google.com/drive/folders/1rDypHfXhtZURXNfZqiWSqahIZaC3Nuw8?
usp=sharing. We used Ripser for the persistent cohomology library (Tralie
et al., 2018).

4.1 Place Cells in 2D Space. We generated the activity of the ith place
cell at animal position x, y as

fi(x, y) = a exp

(
− (x − μix )2 + (y − μiy )2

2σ 2

)
, (4.1)

where a = 40 and σ 2 = 15 in the experiment. We randomly selected μix , μiy
from a uniform distribution ranging from 0 to l. l is the arena’s size, and in
this experiment, l = 50.

4.2 Grid Cells in 2D Space. We used a continuous attractor neural net-
work model to generate the activity of grid cells by simulation (Guanella
et al., 2007). The activity of a neuron i at time t + 1, that is, fi(t + 1), is de-
fined as

f j(t + 1) = (1 − τ )Bj(t + 1) + τ

(
Bj(t + 1)∑N

i=1 fi(t)

)
,

Bj(t + 1) =
N∑

i=1

fi(t)wi j(t),

wi j = I exp

(
−||ci − cj||2

σ 2

)
− T, (4.2)

where ci = (cix , ciy ) is the position of the cell i in 2D space. N is the number
of cells in the network. wi j is the synaptic weight connecting neuron j to
neuron i, with i, j ∈ {1, 2, . . . , N}. I is the intensity parameter, defining the
strength of the synapses, σ regulates the size of the gaussian, and T is the
shift parameter. The parameter τ determines the stabilization strength.

4.3 Grid Cells in 3D Space. The activity f (r) of a grid cell firing at
a face-centered cubic lattice position r was calculated using the following
equations (Stella & Treves, 2015),

f (r) = 1 + 1
4

4∑
i=1

cos(ki · r), (4.3)
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ki = 2π

a

⎛
⎜⎜⎜⎜⎝

0 0
√

3/2

2/
√

3 0 −1/
√

6

−1/
√

3 1 −1/
√

6

−1/
√

3 −1 −1/
√

6

⎞
⎟⎟⎟⎟⎠ , (4.4)

where a is the grid size, which was set to a = 6 in the experiment. The activ-
ity of the 3000 grid cells used in the experiment was generated by substitut-
ing r + �r into equation 4.3. �r is a random number that follows a uniform
distribution between 0 ∼ 6 on the x, y, and z axes.

4.4 Previous Methods. We explain the previous methods used in
our experiments. See the source code (https://drive.google.com/drive/
folders/1rDypHfXhtZURXNfZqiWSqahIZaC3Nuw8?usp=sharing) for the
hyperparameters of the model used in the experiments.

4.4.1 Poisson Linear Dynamical System (Macke et al., 2011). The Pois-
son linear dynamical system (PTDS) is a generative model based on a
linear dynamical system (LDS), which uses variational inference to esti-
mate low-dimensional hidden dynamics s from neural activity o. In LDS,
low-dimensional hidden dynamics s evolves according to linear gaussian
dynamics,

sk,1 ∼ N (s0, Q0),

sk,t+1|sk,t ∼ N (Ask,t + bt, Q), (4.5)

where k represents the number of trials in each experiment. In our experi-
ment, we estimated the low-dimensional dynamics from a single trial k = 1.
Conditioned on s, the activity of neuron i at time t is given by a Poisson
distribution,

ok,t,i|sk,t ∼ Poisson(exp(Cisk,t,i + di)), (4.6)

where the matrix C determines how each neuron’s activity is related to the
hidden dynamics st , and the vector d represents the mean firing rates of the
population activity o. PLDS uses an expectation-maximization (EM) algo-
rithm to learn the parameters � = {C, d, A, Q, Q0, s0}. The posterior distri-
bution in the E-step is given by

log P(s̄k|ok,�) = const +
T∑

t=1

(
oT

k,t (Csk,t + d) −
q∑

i=1

exp(Csk,t,i + di)

)

− 1
2

(sk,1 − s0)TQ−1
0 (sk,1 − s0)

− 1
2

T−1∑
t=1

(sk,t+1 − Ask,t − bt )TQ−1(sk,t+1 − Ask,t − bt ). (4.7)
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In the M-step, we update the parameters � by maximizing the following
expected joint log-likelihood:

L(�′) =
∑

k

∫
[log P(ok|s,�′) + log P(s|�′)]N (s|μk, �k)ds. (4.8)

We used a global Laplace approximation (Yu et al., 2008) to get the mean μk

and the covariance �k.

4.4.2 PfLDS (Gao et al., 2016). PfLDS is a modification of PLDS, which
models the relationship between low-dimensional dynamics s and neural
activity o using artificial neural networks. In PfLDS, equation 4.6 is rewrit-
ten as

ok,t,i|sk,t ∼ Poisson( fψ (sk,t,i)), (4.9)

where fψ is an arbitrary continuous function from the hidden dynamics st

into the spike rate. We represent st through a feedforward neural network
model. In variational inference, we approximate the intractable posterior
distribution pθ (s | o) by a tractable distribution qφ (s | o) and learn the model
parameters θ = (μ1, Q1, A, Q, ψ ) by maximizing the evidence lower bound
(ELBO) of the marginal log-likelihood:

log pθ (o) ≥ L(θ, φ; o) =
K∑

k=1

Eqφ (sk|or )

[
log

pθ (or, sk)
qφ (sr|ok)

]
. (4.10)

4.4.3 Latent Dactor Analysis via Dynamical Systems (LFADS) (Pandarinath
et al., 2018). In LFADS, the feedforward neural networks used in PfLDS
are replaced by recurrent neural networks (RNNs). We estimate the low-
dimensional dynamics s by minimizing the following loss function Lo −
LKL,

log P(o1:T ) ≥ Lo − LKL, (4.11)

Lo =
T∑

t=1

log(Poisson(ot | rt ))g0 , (4.12)

LKL = DKL(N (g0 | μg0 , σg0 )||pg0 (g0))g0 , (4.13)

rt = exp(Wratest ),

st = Wlatentgt,

gt = RNN(gt−1, ut ), (4.14)
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where matrices Wrate map low-dimensional dynamics s to neuron rates r
and matrices Wlatent maps g to s. The priors for g0 and u1 are diagonal gaus-
sian distributions. The prior for ut with t > 1 is an autoregressive gaussian
prior. See Pandarinath et al. (2018), for more details.

4.4.4 Poisson Gaussian-Process Latent Variable Model (P-GPLVM; Wu et al.,
2017). In P-GPLVM, the latent variable dynamics s and the tuning curve f
for the ith neuron are modeled by a gaussian process as follows:

s j ∼ N (0, Kt ), (4.15)

fi | s1:T ∼ N (0, Kx), (4.16)

The spike count of the i′th neuron at t given the tuning curve fi and latent
variable dynamics st is Poisson distributed as

oi,t | fi, st ∼ Poisson(exp( fi(st ))). (4.17)

We estimated the low-dimensional dynamics by the following maximum a
posteriori (MAP) estimation,

sMAP = arg max
s

N∑
i=1

q(oi | s)p(s), (4.18)

log q(oi | s) = log p(oi | f̂i) − 1
2

f̂i
T

K−1
s f̂i − 1

2
log |IT + KsWi|, (4.19)

where Wi = −∇∇ log p(oi | fi),f̂i = arg max
f

p(fi | oi, s), and IT is the identity
matrix (of size T).

4.5 Sparse Circular Coordinates. Sparse circular coordinates is a
method for obtaining low-dimensional coordinates using only a subset of
the data points L ⊂ X, called landmark points, in calculating persistent co-
homology (Perea, 2020). We obtained the landmark points by maxmin sam-
pling (De Silva & Carlsson, 2004). First, we randomly select l1 ∈ X. Then,
when l1, l2, · · · , li−1 have chosen inductively, li ∈ X\{l1, l2, · · · , li−1} is the
data point that maximizes the function

x �→ min{D(x, l1), D(x, l2), · · · , D(x, li−1)}, (4.20)

where D is the metric space. Continue until the desired number of landmark
points are selected. In Figure 3F, we set the number of landmark points to
33,34,35,50,100 for 5000 data points.
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Figure 10. A simplicial complex is a set composed of n-simplex. (A) Exam-
ple of n-simplex. From right to left: vertices, edges, triangles, and tetrahedron.
(B) Example of a single complex.

4.6 Homology and Cohomology. Persistent cohomology creates bar-
codes for n-dimensional holes Hn created by high-dimensional neural ac-
tivity data. We explain the homology and cohomology required to obtain
Hn (Hatcher, 2002; Zomorodian & Carlsson, 2005).

A simplicial complex is a set consisting of n-simplex (see Figure 10).
The boundary of an n-simplex σ = [V0,V1, . . . ,Vn] is composed of n − 1-

simplex combinations. The boundary operator ∂n is defined as

∂nσ = ∂[v0, v1, . . . , vn] =
n∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vn], (4.21)

where v̂i indicates that vi is deleted from the sequence [v0, . . . , vn], that is,
∂[v0v1] = [v1] − [v0], ∂[v0v1v2] = [v1v2] − [v0v2] + [v0v1], for example.

Cn, called n-chain groups, is an Abelian group with an n-simplex basis
and is represented by the following equation with boundary operators:

· · · → Cn
∂n→ Cn−1 → · · · → C1

∂1→ C0
∂0→ 0. (4.22)

For example, ∂1 : C0 → C1 is expressed as

[v0v1] [v0v2] [v1v2]

∂1 =
[v0]

[v1]

[v2]

⎛
⎜⎝

−1 −1 0

1 0 −1

0 1 1

⎞
⎟⎠ . (4.23)

The image (Im) of the boundary operators Bn = Im ∂n+1 is called the
boundary group, and kernel (Ker) Zn = Ker ∂n is called the cycle group.
Then the homology group Hn = Zn/Bn is defined.

When Xn is a set of n-simplex and R is a commutative ring, the element
of Cn = {function fn : Xn → R} is called the co-chain. The coboundary map
d is expressed as

0
d0→ C0 d1→ C1 → · · · → Cn−1 dn→ Cn → · · · (4.24)
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Persistent Cohomology for Decoding Location From Grid Cells 407

When Zn = Ker dn+1, the element of Zn is called the cocycle, and when
Bn = Im dn+1, the element of Bn is called the coboundary. Then the coho-
mology group Hn = Zn/Bn is defined.

4.7 Persistent Cohomology. We used the Vietoris-Rips complex (VR)
method to construct a single complex from a set of data points of higher-
dimensional neural activity (Ghrist, 2008). Let P = {xi ∈ R

N| i = 1, . . . , l} be
the set of l data points in N-dimensional space. In the VR complex, consider
an N-dimensional sphere with radius r centered at each data point xi in N-
dimensional space. The following equation then defines the VR complex:

VR(P) = {σ ⊆ P | ∀x �= y ∈ σ, ‖x − y‖ ≤ r}. (4.25)

We obtain an increasing sequence of VR complexes VR(P, r1) → · · · →
VR(P, rm) according to the increasing sequence r1 < · · · < rm of radius r,
which is called filtration.

The ri(i = 1, . . . , m) is the radius at which the simplex occurred. We ob-
tain the sequence of cohomology for the increasing sequence of VR com-
plexes as follows (Edelsbrunner et al., 2000; Zomorodian & Carlsson, 2005;
Hatcher, 2002):

Hn(VR(P, r1)) ← Hn(VR(P, r2)) ← · · · ← Hn(VR(P, rm)). (4.26)

In persistent cohomology, we can create the barcode by examining how long
the element of Hn(VR(P, ri)) persists for an increasing sequence of radius r.
Those with long durations are considered significant topological features of
the data structure, while those with short durations are considered noise.
The Betti number is defined by bn = dim Hn.

4.7.1 How to Obtain the Circular Coordinates of Torus. We describe
a method for obtaining the circular coordinates of torus from high-
dimensional neural activity data. (For more details, see De Silva et al., 2011
and Perea, 2018.) The n-dimensional torus Tn is represented as n direct prod-
ucts of the unit circumference S1 as Tn = S1 × S1 × . . . S1. The next problem
is to find the circular coordinates θ : X → S1 that map from the VR com-
plex X to S1. We use the parameter f to define the circular coordinates θ on
the VR complex X. Let the cocycle be α ∈ C1(X;R), and the smooth circular
coordinates θ are obtained by minimizing the following equation:

arg min
ᾱ

{||ᾱ||2 | ∃ f ∈ C1(X;R), ᾱ = α + d0 f
}
. (4.27)

4.8 The Process of Unwrapping Periodicities in the Decoded Circular
Coordinates. The latent space of population activity of grid cells in 2D and
3D space is a 2D and 3D torus, respectively. The circular coordinate of the
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torus has a periodicity of 0 to 2π . In order to decode the animal location, it is
necessary to unwrap this periodicity. In this experiment, when the animal
moves per step, it rotates the circular coordinates on the torus by several
tens of degrees at most. However, the values jump approximately 360 de-
grees only at the timing of one rotation of the torus. We unwrapped the
periodicity by adding 2π to subsequent values of the circular coordinates
when moving from 360 degrees to 0 degrees on the torus and subtracting
2π to subsequent values of the circular coordinates when moving from 0
degrees to 360 degrees.
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